New Opportunities

- 2018 National Defense Authorization Act & 2018 Omnibus Appropriations
 - Statistically-based PFAS biomonitoring exposure assessments (EAs) at no less than 8 current or former DOD sites (short term – completed within two years)
 - 10 million dollars for FY2018
 - EAs will include measurement of PFAS in serum and urine, as well as limited environmental (dust and tap water) sampling
 - Multi-site PFAS health study (long term completed over next 5-7 years)
 - 10 million dollars anticipated for FY2019 for this effort, with possibility of additional funds in subsequent years
 - Study design will be informed by data from PFAS EAs

Multi-Site PFAS Health Study

- ATSDR published feasibility assessment of possible future drinking water epidemiological studies at Pease, NH in November 2017
 - Pease International Tradeport is former Air Force base
 - In 2014, one of three wells that serve Pease showed elevated levels of PFOS
 - Level above provisional health advisory set by EPA
 - NH DHHS conducted human biomonitoring program (over 1,500 participants)
 - ATSDR reviewed epidemiological studies that evaluated health effects of PFAS exposures
 - Based on literature review and sample size calculations, report concluded that crosssectional epidemiological studies of children and adults at only one site (e.g., Pease)
 - Feasible for some health endpoints (e.g., lipids, kidney function)
 - Insufficient sample size for other health endpoints (e.g., thyroid, liver and immune function, autoimmune diseases)
 - Highlighted need for multi-site study

- Study communities impacted by PFAS-contaminated public drinking water supply wells and/or private wells
- Cross-sectional study at multiple locations with separate evaluations of children (ages 4–17) and adults (ages ≥18)
 - Case-control study not feasible; difficulties in enumerating cases
 - Cohort, follow up design aspects considered; funding uncertain

Site considerations

- Documented past or present PFAS drinking water concentrations at the tap,
- The magnitude of past or present PFAS concentrations at the tap,
- Size of population exposed,
- Amount of information available on the contaminated drinking water system or private wells, and
- If biomonitoring for PFAS has previously occurred at the site.

- Expected sample size: 8,000 total participants
 - 2,000 children
 - 6,000 adults
 - Based on review of scientific literature to study health outcomes of interest
- Categorized participants based on measured or modeled serum concentration levels of PFAS compounds
 - Referent or low, medium, high

Health Outcomes to be Studied					
Outcome	Children	Adults	Outcome	Children	Adults
Lipids	Х	Х	Neurobehavioral	Х	
Cardiovascular	Χ	Х	Osteoarthritis/ Osteoporosis		Х
Kidney function/ Disease	Х	Х	Endometriosis		Х
Liver function/Disease	Х	Х	Immune function	Х	Х
Thyroid	Х	Х	Vaccine response	Х	
Sex hormones/ maturation	X		Autoimmune disease		Х

Biomarkers to be studied

- Total cholesterol, low density lipoprotein, high density lipoprotein, total triglycerides
- Uric acid, creatinine
- Thyroxine (T4), T3, thyroid stimulating hormone (TSH)
- Glucose, insulin, glycosylated hemoglobin (HbA1c), auto-antibodies (GAD-65 and IA-2), C-peptide, pro-insulin
- Alanine transaminase (ALT), γ-glutamyltransferase (GGT), direct bilirubin, and cytokeratin-18 (CK-18)
- Immunoglobulin G (IgG), IgA, IgE and IgM; (C reactive protein, and antinuclear antibodies (ANA) – adults; antibodies to measles, mumps, rubella, tetanus, and diphtheria – children)
- Testosterone, estradiol, sex hormone-binding globulin (SHBG), follicle stimulating hormone, insulin-like growth factor
- Cytokines and adipokines (e.g., IL-1 β , IL-6, IL-8, MCP-1, TNF α , leptin, adiponectin, resistin, PAI-1)

Questionnaire data will collect information on

- Demographics
- Water consumption and residential history
- Medical history and family history of disease
- Occupational history
- Reproductive history in women

Neurobehavioral testing in children will include

Measures of intelligence, hyperactivity, inattention, emotional conduct, peer relationship, and executive function.

- Historical reconstruction of serum PFAS concentrations by estimating half-lives and elimination rates to inform physiologically based pharmacokinetic (PBPK) modeling
 - Historical serum PFAS reconstruction based on water contamination data will enable evaluation of exposure lags and vulnerable periods as well as statistical analyses that can control for reverse causations